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The density functional method is used to calculate the electron density on the 
surface of a dielectric interacting with a gas-discharge plasma. 

Study of the electrophysical properties of a solid surface interacting with a plasma is 
a scientific field of practical importance. It is also important in solving fundamental prob- 
lems and practical applications in ever-increasing numbers, including microelectronics, plas- 
ma chemistry, contact plasma diagnostics, etc. However, despite significant progress in un- 
derstanding surface phenomena, at the present there is practically no satisfactory descrip- 
tion of such properties available. Since such properties are in the final reckoning deter- 
mined by electron distribution on the surface, the problem of determining such properties re- 
duces to description of a multielectron system in an external field created by the atoms of 
the solid and the plasma ions. 

The primary problem involved is calculation of the value of the electron density n(r) 
on the surface of a dielectric interacting with a gas-discharge plasma. To solve such a prob- 
lem it is necessary to find the distribution of this density and the electrostatic potential 
~(r) in the negatively charged electron surface layer (ESL) which develops on the plasma-- 
dielectric boundary [i] (Fig. I). 

This distribution is quite inhomogeneous in character, and for its calculation we will 
employ the density functional method, widely used for study of properties of inhomogeneous 
electron systems [2]. The method is based on the assumption that there exists a reciprocally 
unique correspondence between the wave function of the equilibrium electron system and the 
electron density in the ground state n(r). It follows from this assumption that the thermo- 
dynamic quantities (energy, entropy, ~ potential, etc.) of the electronic system are functions 
of the density n(r) [3-5]. 

The ~ potential of the system of electrons located in thermodynamic equilibrium at T~0 
is defined by the minimum value of the functional [4, 5] 

where 

f e ~" y y  n(r) n(r')drdr' f l - -  . V(r)n(r)dr + ~ I r - - r ' l  ~-G(n, r ) - - I x  n(r )dr ,  (I) 

G (n, T) = Ts (n, T) - -  TS~ (n, T) + Fxr (n, T), (2)  

relative to variations of the electron density n(r). From this it follows that the distribu- 
tion n(r) can be determined if the form of universal functional (2) is known. However, its 
exact form for inhomogeneous electron systems is unknown, and therefore various approxima- 
tions are used. One most widely used is the local density functional approximation [2, 5] 

O(n, T) S[t~(n, T)--TS~(n, T)+ f~o( , T)ln(r)dr. (3) 

Substituting Eq. (3) into Eq. (i) and minimizing the latter, we obtain an equation for 
determination of the electron density in the form 

V (r) + e ~ I n  (r'___J) dr__' ~- ixh (n, T) - -  ~ = 0, (4)  
J [ r - - r ' l  

where 
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Fig. i. Distribution of electro- 
static potential ~(z) , plasma 
electron density np(Z), and ion 
density n+(z), and ESL electron 
density n(z) on plasma--dielectric 
boundary. 

h (n, T) = 6G L (n, T)/6n (5) 

i s  t he  c h e m i c a l  p o t e n t i a l  o f  a homogeneous e l e c t r o n  s y s t e m  w i t h  d e n s i t y  n a t  t e m p e r a t u r e  T. 

The q u a n t i t y  p k ( n ,  T) i s  d e t e r m i n e d  by the  sum o f  the  i d e a l  component  and a c o n t r i b u t i o n  
p r o d u c e d  by i n t e r a c t i o n  o f  the  e l e c t r o n s ,  dependen t  on t h e  d e g r e e  o f  d e g e n e r a t i o n  and n o n -  
i d e a l i t y  o f  t h e  e l e c t r o n  s y s t e m  [ 6 ] .  

C o n s i d e r i n g  t h a t  t h e  ESL i s  a n o n d e g e n e r a t e  e l e c t r o n  s y s t e m ,  on t h e  b a s i s  o f  t h e  e x p r e s -  
s i o n  f o r  f r e e  e n e r g y  o f  a s l i g h t l y  n o n i d e a l  s y s t e m  a t  ~ = (4~n13) 1/2 ~ 1 [7] we o b t a i n  

~ / k T  = ln[(1/2)Aan(1 + 0.1768A3n + . . . ) ] - - ( 1 / 2 ) ~ - - ( 1 / 6 ) ~  [ ln(~/~)+ 11-- ~]~-3 [Q ( - -  ~) - (1/2)E(--~)],  (6) 

where A = (2~h2/mkT) l /2 ;  ~ = (2~) l /Z l /A .  

Using  the  a n a l o g o u s  e x p r e s s i o n  f o r  a n o n l d e a l  e l e c t r o n  sy s t em p r e s e n t e d  in  [6] f o r  1 < 
F < 155 • i0, where F = Z/nX/3, we will have 

~h/kT = In[(I/2)ASn(l + 0.1768A3n + ...)]--0.143F + 0.751nF + 0,27. (7) 

The external field potential V(r) for the electron surface layer is equal to the sum of 
the potentials of the dielectric surface atoms and the plasma ions located in this layer. 

The value of the dielectric surface atom potential is determined with a Heine-Abarenkov 
type screened pseudopotential approximation [8] 

U~(r) - -  Rm [A~chd + ( A o / d ) ( s h d - - d c h d ) ] e x p ( - - a r ) ,  (8) 
r 

where  a =  2[(3~2nv)l/3/(~h~/me2)]l/2; d = arm;  A~ = Zve2/Rm; A0 and R m a r e  t h e  s u r f a c e  atom c o r e  p a r a -  
m e t e r s ,  the values of which are presented for various elements in [9]. 

The electrostatic potential q(r) created by plasma ions and electrons in the ESL is de- 
termined with the Poisson equation. The ion distribution in the ESL is approximated by a ho- 
mogeneous positive background with density rub(zo) (Fig. i). 

Thus, we find that 

and 

V(r) + e ~ f n (r') dr'[r_r,i - ~ U~ (r--  R i ) i  + e~(r) (9) 

V2~ (0 = --  (e/e~) [n (r) - -  n+ (z0)l. (10) 

To c a l c u l a t e  the  d i s t r i b u t i o n s  n ( r )  and ~(r)  i n  t he  ESL w i t h  Eqs.  ( 4 ) - ( 1 0 )  i t  i s  n e c e s -  
s a r y  to  know t h e  b o u n d a r y  c o n d i t i o n s  and t h e  t o t a l  number o f  e l e c t r o n s  i n  t h e  ESL. 

The b o u n d a r y  c o n d i t i o n s  can be found from the  f o l l o w i n g  c o n s i d e r a t i o n s .  I t  i s  known t h a t  
t he  v a l u e  o f  t h e  f l o a t i n g  p o t e n t i a l  ~p , to  which  the  s u r f a c e  o f  an i s o l a t e d  s o l i d  body i n t e r -  
a c t i n g  w i t h  a p l a sma  i s  c h a r g e d ,  i s  d e t e r m i n e d  by commencing from t h e  e q u a l i t y  o f  e l e c t r o n  and 
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Fig. 2. Electron density distribution in ESL for interaction of SiO= with argon 
gas discharge at T e = 1.85"10 ~ ~ i) np= 109 cm-3; 2) 101~ 3) 1011; 4) 1012 
cm -3. n(z), cm-3; z" l0 s , cm. 

Fig. 3. Electron density on Si02 surface interacting with argon plasma discharge: 
i) calculated values; 2) data obtained from experimental dependence of ESL capaci- 
tance on frequency, nso, cm'3; np, cm -3. 

ion flux densities moving from the plasma onto the surface. From this it follows that the 
value of ~p lies in the plane in which these densities are equal to each other. It follows 
from physical considerations that this plane is most probably a plane parallel to the surface 
and passing through Zo (Fig. i). Thus ~0=~p. 

This fact allows us to find the values of the electron density no, the potential ~0 , and 
the field intensity Eo in the plane passing through Zo commencing from physical models used 
for determination of the properties of plasma Langmuir layers [i0]. 

The total number of electrons in the ESL can be calculated from the condition of electri- 
cal neutrality of the entire double layer as a whole (Fig. I): 

Zp 

[np (z) + n (z) - -  n+ (z)l dz = O. 
0 

(Ii) 

Calculations of electron-density and potential distributions in the ESL for the cases of 
interaction of a gas-discharge plasma with silicon ($i0=) and aluminum (AI=03) oxides show 
that the electron density in the ESL is 4-6 orders of magnitude higher than the electron dens- 
ity in the plasma n , the voltage drop in the layer is negligibly small in comparison to the 
potential drop in t~e Langmuir layer, and the main charge of the ESL is concentrated in a re- 
gion (3-5).i0 -s cm in extent. The results obtained for the case of an SiO=--argon gas dis- 
charge are shown in Figs. 2 and 3. It is evident that the ratio nso/n p = (2-50)'10 ~. To con- 
firm the calculated values obtained the electron density on the SiO2 surface was determined 
from experimental data (Fig. 3, curve 2) by the method described below. 

To determine the value of nso from the experimental data the frequency dependence of ESL 
capacitance C(m) obtained from the equation for rate of change of electron density in the ESL 
(kinetic equation) in the presence of an ac voltage Vmsinmt was compared to the experimental 
dependence of this capacitance, found in turn by comparing the frequency dependences of ca- 
pacitance of floating probe-plasma and Si02--plasma systems obtained in [Ii] by the plasma ca- 
pacitor method for a gas-discharge plasma in argon. 

The resulting rate of change of the electron density in the ESL is determined by the dif- 
ference between the rate of electron arrival from the plasma ge and the rate of electron re- 
combination with plasma ions on the surface, i.e., 

d n s / d t  ~ ge  -- ~ e n s n +  (z~ .  (12) 

S i n c e  in  t h e  e q u i l i b r i u m  s t a t e  d n s / d t  = O, t h e n  

a e = ge /nson+ (Zo). (13) 

From this it follows that Eq. (12) has the form 

d 8n~.  
(~n~) = - -  

d t  ~ (14)  
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where 

6n~ = n s - - n ~ o ,  (15) 

~-i = gelnso. (16) 

Solution of kinetic equation (14) in the presence of an ac voltage Vmsinmt leads to an 
expression for the frequency dependence of ESL capacitance of the form [12] 

where 

is the maximum ESL capacitance. 

C(o~) = C~/(1 § o~z) ~, (17) 

Cs = dQso/d%o (18) 

It follows from Eq. (17) that knowing the frequency dependence C6m), one can determine 
the parameters Cs, T, and consequently, find the electron density on the dielectric surface 
interacting with the plasma. 

As is evident from Fig. 3, the values of the electron density on the SiO= surface deter- 
mined by calculation (curve i) and with the aid of experimental data (curve 2) coincide well. 

NOTATION 

V(r), external field potential; k, Boltzmann's constant; e, electronic charge; B, chemi- 
cal potential of electron system; T, temperature; T s and Ss, kinetic energy and entropy of 
noninteracting electron system; F~, contribution to system free energy from exchange and cor- 
relation effects; th, S h, fh , kinetic energy, entropy, and contribution to free energy by 

S XC 

exchange and volume effects per electron for homogeneous system of density n; l, amplitude of 
electron Coulomb scattering; h, normalized Planck's constant; m, mass of the electron; Q(--~), 
E(--~), transcendental functions; nv, surface atom valence electron density; ZV, number of sur- 
face atom valence electrons; Ri, radius vector of surface atom i; e D, absolute dielectric per- 
mittivity of dielectric; Zp, length of plasma Langmuir layer; nso, ns, electron density on di- 
electric surface interacting with plasma in equilibrium state and in presence of ac voltage; 
Vm, m, amplitude and frequency of ac voltage; ~e, electron--ion recombination coefficient on 
dielectric surface; Qso, ESL charge; %o , dielectric surface potential; Te, plasma electron 
temperature. 
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CHARACTERISTICS OF A LONGITUDINAL GLOW DISCHARGE 

R. F. Yunusov UDC 537.525 

A system of equations has been solved that describes the positive column in a glow 
discharge in a cylindrical channel bearing a longitudinal gas flow. 

Glow discharges (GD) have been widely used recently in electronics, various technologi- 
cal processes, plasmochemical reactors, and so on. It is therefore important to examine the 
distributions of the internal GD parameters such as electron concentration, electric field 
strength, and neutral-particle temperature as affected by external conditions. Some regulari- 
ties have been established in the electric fields and electron concentrations in longitudinal 
GD [1-4]. Measurements have been made [5-8] on the temperature patterns in axially symmetri- 
cal discharges bearing longitudinal gas flows. In those papers , the neutral-particle tempera- 
ture in the positive GD column was calculated by solving the energy-conservation equation 
with a given distribution for the internal heat sources over the positive column. However, 
in a GD in a gas flow, the output from the internal heat sources varies along the axis and 
is in fact an unknown function to be determined. It is much more complicated to determine 
the parameters E, ne, and T together. In [9], a solution was obtained numerically, and the 
distributions of the parameters in flowing hydrogen were obtained for certain conditions. How- 
ever, it is preferable to derive analytic solutions in order to elucidate the general regu- 
larities in convective heat transfer in a glow discharge, and these are also useful in check- 
ing and improving numerical-calculation programs for more complicated cases. 

In the proposed model, the positive column in a cylindrical channel is considered in re- 
lation to three forms of particle: neutral particles, electrons, and singly charged positive 
ions. The following form can be given [i0, ii] to the stationary equations of continuity for 
the electrons and positive ions: 

div f i  = vn~--  5n~ni, (I) 

div Fe = ~ n e -  6nett~. (2 )  

The following equations describe the charged-particle flux densities across any area in the 
discharge zone: 

?,  = n ~ -  DNn~ + n,~,E, (3) 

?e = " ~  - -  DeVne - -  ne~eE, (4) 

where  t h e  f i r s t  t e r m  on t h e  r i g h t  i n c o r p o r a t e s  t h e  c o n v e c t i v e  c h a r g e  t r a n s p o r t ,  t h e  s eco n d  
a r i s e s  f rom d i f f u s i o n ,  and the  t h i r d  f rom e l e c t r i c - f i e l d  d r i f t .  We add and s u b t r a c t  (1) and 
(2) t e r m  by t e r m  and u s e  t h e  c o n d i t i o n  f o r  p l a s m a  q u a s i n e u t r a l i t y  ( n i ~ n  e = n) w i t h  (3) and 
(4) to get 

2 div (nv~ - -  div [(De + Di) V n] + (~i - -  ~.) n div E + (~i - -  ~e)" EV n = 2vn - -  25n 2, 

--> -+ 

div [ (De- -D~)vn]  +(~i  + ~te) Evn  + (~  + ~te)n d i v e  = O. 

(5) 

(6) 

It follows from (6) and (5) that 

div (nT) = div (Day n) + vn -- 6n ~, (7)  

where Da = (D~p~ + Di~e)/(p'e + pi). 

If the condition Da/R2>>n5 is obeyed at any point in the discharge zone, bulk recombina- 
tion is less important than ambipolar charge diffusion to the wall, and it can he neglected. 
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